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MESO Simulation
Instantaneous Release

! Random-Walk Tracer Techniques
! 3D Time-Dependent Wind Fields
! Spatially-Varying Surface Characteristics

! Complex Terrain
! State-of-the-Art Meteorology
! Full Chem / Bio Capabilities

~ 20,000 lines of code

Introduction to MESO Transport and Dispersion Code
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MESO Stochastic Tracer Techniques

Random Walk 
With Scale-Dependence
- Horizontal:  Layer by layer
- Vertical: Whole cloud (but 
mixing length often limited by 
proximity to surface.)

Clouds (Clusters) Random Walk Technique: Diehl, et al.   
1982, J. Applied Met., 21, 69-83.
• Rigorously meets well-mixed

condition (no drift)
• Numerically fast
• No grid required / good spatial

resolution (1 to 40 m vertical)
Diffusivity:   K = f ( σσσσv, λλλλm ) 

Statistical Theory With 
Reduction for Droplet Inertia

Above PBL: CAT/Gravity Wave ModelsHorizontal: Langevin
Vertical: 
- Stable: Random Walk (Diehl) 
- Unstable: Stochastic technique 

of Franzese et al., 1999, Atmos.        
Environ. 33,2337-2345

Plumes

Function of:  Height (z),  Stability (L), 
Friction Velocity (u*),
Boundary Layer Height (h, zi)

1) Near Surface,        2) Surface Layer,
3) Matching Layer,   4) Boundary Layer

Turbulence Parameterization



Cloud Growth Rate Integral

Horizontal Growth 
Handled By Layer

Sheared 
Tracer 
Cloud

Growth Rate Curve 
Applied to Each Layer

σσσσx

Applied Diffusivity



Model Comparison To Measured Vertical Cloud Size

Release Heights: 24, 50, 87 m
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MESO Terrain/Surface Modeling

! 3D Time-Dependent Wind Fields
Over Complex Terrain

! Terrain-Following Tracer Techniques
to Prevent Artificial Deposition

! Each Ground Cell Treated Individually:
• Surface Characteristics (albedo, 

surface roughness, moisture
resistance, vegetation, etc. )

• Input Meteorology
(cloud  cover, wind speed, RH,  etc.)

• Predicted Meteorology
(u*, L, w*, zi)

Final Boundary Layer Height 
in Each Activated Ground Cell

Advection: Predictor / Corrector 
Technique

DownwindCrosswind



Night Time Heat Flux
Using Modified Method of van Ulden and Holtslag (1983)

GQEH −=+ *λ

Starting Point:    Sensible  +  Latent   =   Net Radiation  - Ground

IMPROVEMENTS
1) Added relative humidity 

terms to latent heat expression
2) Modified psychrometric

constant γ using moisture 
resistance rs.

3) More accurate expression for 
the net radiation.

4) Added improved expression 
for surface resistance.

Must iteratively solve complex 
nonlinear expression for u* and L.
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Predicted Growth of the Convective Boundary Layer
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Predicted Breakup of the CBL Assuming Fixed Winds

• Functional form of pot temp θθθθ(z) based on profiles found in the literature. 
• Add sensible heat flux plus energy conservation to evolve the profile vs time.

Compute 
diffusivity 
profile from 
model 
based on 
Richardson 
number.



Dynamic Second-Order-Closure Model in MESO

• Preliminary Version of MESO Has Been Completed with 
Dynamic Second-Order Closure Capabilities.

• Numerically Advances the Prognostic Equation For Turbulent-
Kinetic-Energy Using 1D Grid Through the Convective 
Boundary Layer (CBL).

• Important in High Shear Conditions and Uneven Terrain.  
Diffusivities Can Become Four Times Higher Than Seen in 
Standard Flat-Terrain Boundary Layers.

• Up-To-Date SOC Relations Are Used That Are In Agreement 
With Measurements and Large Eddy Simulations.

• The Model Uses a Turbulence Master Length Scale That 
Guarantees A Heat Flux Profile That Is In Agreement With 
Measured Profiles In Typical CBLs.



Effect of Dynamic 2nd Order Closure on Dispersion
For High Shear Winds at White Sand Missile Range

Standard CBL SOC-CBL
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Turbulent Deposition and Vegetation Filtration

MESO Contains Models To Handle:
- Turbulent Deposition of Particles to Rough Surfaces
- Vegetation Filtration

Both Are Strong Functions Of:
- Particle Size and Density
- Friction Velocity (wind speed)
- Atmospheric Stability (Obukhov length scale L)
- Surface Characteristics (surface roughness, characteristic size

of the vegetation, vegetation density, wet/dry) 

Models are user friendly: 
- Select vegetation type
- Input estimate of density from 0. to 1.0.



Turbulent Deposition Model With Vegetation Filtration
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Source Meteorology
•  100 kg GB at Height = 50 m
•  300 µm MMD (σg=1.1)
•  Initial Puff Size: σ = 2 m
•  100,000 Droplet Tracers

•  5 m/s Wind Speed •  10 °C Surface Air Temperature
• Midlatitude Summer •  0.1 m Surface Roughness
•  10:00 am Release •  0.3 Surface Albedo
•  0.7 Ground Cover

Dose Without
Vapor Feedback

Dose With
Vapor Feedback

MESO Simulation With Droplet Evaporation



Downloading Meteorology Forecasts to MESO

• Code Developed to Download COAMPS Forecast Grid Data 
Using METCAST Scripting Language:

- 6 Hour Dumps at 0.2 Degree Resolution (~20 km cell size)

- User can select longitude and latitude ranges to download.

- Winds, Temperatures, Pressures, Cloud Cover, and Terrain 
(Relative Humidity, Surface Moisture, and Albedo can be easily 
added.)

- Vertical winds generated by assuming quasi steady-state and 
using conservation of mass with dry-air thermodynamics.

- Downloaded data is reformatted into MESO input met and 
terrain files.
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Dose/Deposition Variance Technique

1. Using stochastic tracer techniques, model three scale-dependent “cloud” 
clusters and one plume cluster. (All three follow the average wind direction.)

2. Each cycle, convert plume tracers to path tracers.
3. Divide path tracer distribution into three altitude groups: low, medium, high
4. Force three “true” cloud clusters to track at height of three path groups.
5. Each cycle, save deposition and concentration near the ground (for dose).
6. Accumulate Dose/Dep from 3 clouds over many cloud paths.

Stochastic 
Cloud-Path 
Distribution

3 Scale-
Dependent 
Clusters

Stochastic 
Plume 
Tracer 
Distribution

Downwind

A
lti
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Comparison Between Average Droplet Deposition From
Plume Tracers and 3-Cloud Many-Paths Method: Code Verification

3 Clouds, Many Paths
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Thorough Validation 
Effort Currently 
Underway By NSWC

MESO Validation
•  High Stack Emissions (old)
•  Crystal Mist Test Data (High Altitude and High PBL)
•  Dugway Test Data (Surface Deposition)
•  Standard Surface Releases

- Rough Cut with Prairie Grass data
- Correct vertical and lateral spread with distance

•  Pea Sooper (1.0 and 1.5 mm Beads)

Cloud Release in 
Stable Atmosphere
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MESO Urban Modeling Using RUSTIC CFD Predictions

MESO is being modified for 
urban modeling with RUSTIC:

– Modified to accept RUSTIC 
(and ADVEDS) wind field and 
turbulent kinetic energy (TKE) 
data

– To handle abrupt objects with 
detached flow

– Modified with an urban 
plotting capability
• Dose and deposition plots
• Concentration plots
• Streamlines and random-

walk particle paths
Dose from two release points (Note high 

dose behind building at far end where 
eddies form and particles circulate.)

Wind Direction

High dose area behind 
building away from 

release point

Flow is often
non-intuitive



Code Status

• Heading into code verification/validation stage by Naval Surface
Warfare Center

• A few sections of the code need additional time to mature and to make 
more “user friendly:” 

! Forecast Downloads  (maturing rapidly)
! Dynamic Second-Order Closure Model (in the code but in a research 

form)
! Dose / Deposition Variance and Conditional Probability. (Additional 

code work still needed, but should be complete in FY03.)
! Urban Modeling With CFD Winds. Improvements still needed in:

1) CFD turbulence modeling, 
2) Atmospheric stability modeling, and 
3) Handling of upwind atmospheric turbulence. 


